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Abstract

Derivation of geometry theorems belongs to mighty tools of automated geometry theorem
proving. By elimination of suitable variables in the system of algebraic equations describing a
geometric situation we get required formulas. The power of derivation is presented on computa-
tion of the area of planar polygons given by their lengths of sides and diagonals. This part we
conclude with derivation of a formula of Robbins for the area of a cyclic pentagon given by its
side lengths.
Searching for loci of points of given properties is a special case of derivation. This topic belongs
to the most difficult parts of school mathematics all over the world. New technologies DGS and
CAS enable to overcome this problem. We demonstrate it in a few examples from elementary
geometry.

1 Introduction
In the paper we will be concerned with derivation of geometric theorems by automated tools.
First we introduce derivation as a part of the theory of automated geometry theorem proving. We con-
tinue with deriving formulas for the area of a quadrilateral and a pentagon in the plane given by their
lengths of sides and diagonals. Then the formula of Brahmagupta for the area of a cyclic quadrilateral
given by its side lengths is investigated. This part is concluded by derivation of the analogous formula
for a cyclic pentagon. Whereas Brahmagupta formula comes from 6th century AD, it took almost
1400 years until 1994 American Robbins found it [12]. In this paper author’s specific approach of
finding this formula is shown.
The second part of the paper is devoted to a special class of derivation — searching for loci of points
of given properties. This topic belongs to the most difficult parts of school mathematics. New tech-
nologies such as dynamic geometry systems (DGS) and computer algebra systems (CAS) facilitate
this problem. We will show how to search for loci using automated tools. First we use DGS to state
a conjecture, then we apply CAS to find the searched locus exactly. The method is suitable for all
school levels from elementary schools to universities.
During computations we will use dynamic geometry system GeoGebra, and computer algebra systems
CoCoA1 based on Gröbner bases (GB) computation and Epsilon2 based on Wu-Ritt (WR) approach.
Computations were done on PC Intel Core2 Duo 3.16GHz.

1Software CoCoA is freely distributed at the address http://cocoa.dima.unige.it
2Software Epsilon is freely distributed at http://www-calfor.lip6.fr/∼wang/epsilon/
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2 Automated derivation
Automatic derivation is a part of automatic discovery of theorems in geometry. Whereas in auto-
matic discovery we search for complementary hypotheses for a geometric statement to become true,
by automatic derivation of theorems we mean finding geometric formulas holding among prescribed
geometric magnitudes which follow from the given assumptions [10]. Let us say it more precisely.
Denote by K[x1, . . . , xn] the ring of polynomials of n indeterminates x = (x1, . . . , xn) with coeffi-
cients in the fieldK,whereK is a field of characteristic zero, for instance the field of rational numbers.
Assume that polynomial equations h1(x1, . . . , xn) = 0, . . . , hr(x1, . . . , xn) = 0 express geometric
properties of some objects. Let x1, . . . , xm be independent variables (parameters) and xm+1, . . . , xn
dependent variables. Eliminating variables (dependent or independent) we get the elimination ideal
which contains only polynomials in those variables we did not eliminate. Usually we eliminate inde-
pendent variables x1, . . . , xm or, if needed, some dependent variables xm+1, . . . , xp, m ≤ p ≤ n to
obtain a geometric statement expressed by the equation c(xp+1, . . . , xn) = 0 which follows from the
assumptions h1 = 0, . . . , hr = 0. The theorem holds [8]:

Theorem: Let I = (h1, . . . , hr) ⊂ K[x1, . . . , xn] and c ∈ I ∩K[xp+1, . . . , xn], for p ≤ n. Then

h1(x1, . . . , xn) = 0, . . . , hr(x1, . . . , xn) = 0⇒ c(xp+1, . . . , xn) = 0.

In the next section we will show several examples on derivation of known or less known formulas
from geometry of polygons.

2.1 Area of polygons
We will study the area of a planar polygon A1A2 . . . An which is given by its lengths of sides and
diagonals. The (signed) area of a polygon is defined regardless of whether it intersects itself or not.
The theorem holds [7]:

Theorem: Let dij = |AiAj|2 denote a square of the distance of the vertices Ai, Aj. Then the area p
of an n-gon A1A2 . . . An is given by

16p2 =
n∑

i,j=1

∣∣∣∣ di,j di,j+1

di+1,j di+1,j+1

∣∣∣∣ . (1)

In the following we derive in automated way special cases of the theorem above — formulas for a
quadrilateral and a pentagon given by their lengths of sides and diagonals.
For n = 3 we get the well-known formula of Heron

16p2 = −a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2c2a2. (2)

As automated derivation of the Heron’s formula is quite frequent in the literature, we omit it.
Let us derive a formula for the area of a quadrilateral:

Consider a planar quadrilateral ABCD with lengths of sides a, b, c, d and diagonals e, f. We are to
express the area p of ABCD in terms of a, b, c, d, e, f.

Introduce a rectangular coordinate system such that A = [0, 0], B = [a, 0], C = [u, v], D = [w, z],
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Figure 1: Area of a quadrilateral ABCD

Fig. 1. We express relations between b, c, d, e, f, p and coordinates a, u, v, w, z by the following sys-
tem of algebraic equations:

b = |BC| ⇒ h1 := (u− a)2 + v2 − b2 = 0,

c = |CD| ⇒ h2 := (w − u)2 + (z − v)2 − c2 = 0,

d = |DA| ⇒ h3 := w2 + z2 − d2 = 0,

e = |EF | ⇒ h4 := u2 + v2 − e2 = 0,

f = |EF | ⇒ h5 := (w − a)2 + z2 − f 2 = 0,

p = area of ABCD ⇒ h6 := p− 1/2(av − vw + uz) = 0.

Elimination of variables u, v, w, z in the system h1 = 0, h2 = 0, . . . , h6 = 0 gives the elimination
ideal in variables a, b, c, d, e, f, p. In CoCoA we get

Use R::= Q[a,b,c,d,e,f,p,u,v,w,z];
I:=Ideal((u-a)ˆ2+vˆ2-bˆ2,(w-u)ˆ2+(z-v)ˆ2-cˆ2,wˆ2+zˆ2-dˆ2,
uˆ2+vˆ2-eˆ2,(w-a)ˆ2+zˆ2-fˆ2,p-1/2(av-vw+uz));
Elim(u..z,I);

four polynomials as generators of the corresponding elimination ideal. One of them leads to the
equation

16p2 = 4e2f 2 − (a2 − b2 + c2 − d2)2 (3)

which is the desired result.3 We can verify that (3) is in accordance with (1) for n = 4.

Elimination of u, v, w, z in the system h1 = 0, h2 = 0, . . . , h5 = 0 gives the elimination ideal which
is generated by the only polynomial

M := −2(a4c2−a2b2c2+a2c4−a2b2d2+b4d2−a2c2d2−b2c2d2+b2d4+a2b2e2−a2c2e2−b2d2e2+
3The remaining three polynomials are also in variables a, b, c, d, e, f, p, and hence express p in terms of a, b, c, d, e, f.

They can be derived from (3) and the following relation (4).

56



The Electronic Journal of Mathematics and Technology, Volume 6, Number 1, ISSN 1933-2823

c2d2e2 − a2c2f 2 + b2c2f 2 + a2d2f 2 − b2d2f 2 − a2e2f 2 − b2e2f 2 − c2e2f 2 − d2e2f 2 + e4f 2 + e2f 4).

It holds

M :=

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 a2 e2 d2

1 a2 0 b2 f 2

1 e2 b2 0 c2

1 d2 f 2 c2 0

∣∣∣∣∣∣∣∣∣∣
.

M is the well-known Cayley–Menger determinant [1]. The condition

M = 0 (4)

expresses a mutual dependence of all six distances between the vertices of a planar quadrilateral
ABCD.

Similarly we can derive a special case of (1) for a planar pentagon ABCDE with lengths of sides
a, b, c, d, e and diagonals i1, i2, i3, i4, i5 with the area p. If we denote a = |AB|, b = |BC|, c = |CD|,
d = |DE|, e = |EA|, and i1 = |CE|, i2 = |AD|, i3 = |BE|, i4 = |AC|, i5 = |BD|, Fig. 2, then

Figure 2: Area of a pentagon

16p2 = −(a4 + b4 + c4 + d4 + e4) + 2(a2b2 + b2c2 + c2d2 + d2e2 + e2a2)

+2(i21i
2
2 + i22i

2
3 + i23i

2
4 + i24i

2
5 + i25i

2
1)− 2(a2i21 + b2i22 + c2i23 + d2i24

+e2i25). (5)

2.2 Area of cyclic polygons
In this part we will study cyclic polygons, i.e., those whose vertices lie on a circle. We will derive
area of cyclic polygons in terms of their side lengths. We start from well-known formulas for area of
a triangle and a cyclic quadrilateral. This part we conclude with derivation of the formula of Robbins
[12] for the area of a cyclic pentagon.
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As any triangle is cyclic then the formula for the area of a triangle with side lengths a, b, c is the same
as the formula of Heron (2).
The analogy of the formula of Heron for a cyclic convex quadrilateral with side lengths a, b, c, d and
the area p is the following formula of Brahmagupta (Brahmagupta — Indian mathematician, 598–c.
665 A.D.)

16p2 = (−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d). (6)

Since that time no formula for a cyclic pentagon with given side lengths a, b, c, d, e and the area p,
despite a great effort of mathematicians, appeared until 1994 when American D. P. Robbins [12]
discovered it. It took almost 1400 years than the formula for the area of a cyclic pentagon appeared.
The reason why it lasted so long is a big complexity of such a formula.
Whereas Robbins combined several methods to discover the formula for a cyclic pentagon, we will
demonstrate a method of deriving such a formula based on the theory of automated derivation.

First we will derive formula of Brahmagupta, then we show how to derive the formula of Robbins.

Problem (Brahmagupta): Given a cyclic quadrilateral with side lengths a, b, c, d and the area p.
Find a relation among a, b, c, d, p.

We will solve the problem using coordinate-free approach. Consider a cyclic quadrilateral ABCD
with side lengths a, b, c, d with the area p. Denote by e, f its lengths of diagonals, Fig. 3.

Figure 3: Cyclic quadrilateral ABCD

By well-known formulas of Ptolemy [2] we express that ABCD is cyclic. It holds

ac+ bd− ef = 0 (7)

for a cyclic convex quadrilateral and

ac− bd+ ef = 0 or − ac+ bd+ ef = 0

for a cyclic non-convex quadrilateral.
First suppose that ABCD is a convex cyclic quadrilateral. Consider the following hypotheses:
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p is the area of ABCD ⇒ h1 := 4e2f 2 − (a2 − b2 + c2 − d2)2 − 16p2 = 0

by the formula (3), and

ABCD is cyclic and convex ⇒ h2 := ac+ bd− ef = 0.

The elimination of variables e, f from the system h1 = 0, h2 = 0 gives

Use R ::= Q[a,b,c,d,e,f,p];
I:=Ideal(4eˆ2fˆ2-(aˆ2-bˆ2+cˆ2-dˆ2)ˆ2-16pˆ2,ac+bd-ef);
Elim(e..f,I);

the formula (6).
Now consider that a quadrilateral ABCD is cyclic non-convex. Then

ABCD is cyclic and non-convex⇒
h3 := ac− bd+ ef = 0 or h4 := −ac+ bd+ ef = 0.

The elimination of e, f in the system h1 = 0 and h3 = 0 gives

Use R ::= Q[a,b,c,d,e,f,p];
I:=Ideal(4eˆ2fˆ2-(aˆ2-bˆ2+cˆ2-dˆ2)ˆ2-16pˆ2,ac-bd+ef);
Elim(e..f,I);

the formula

16p2 = (−a+ b− c+ d)(a− b− c+ d)(a+ b+ c+ d)(a+ b− c− d). (8)

The remaining relation h4 = 0 together with h1 = 0 give the same result (8).
Thus for a cyclic quadrilateral with given side lengths a, b, c, d we get two formulas (6) and (8) which
differ only in one term. Namely if we compute the products in (6) and (8) we get

16p2 = −(a4 + b4 + c4 + d4) + 2(a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2) + 8abcd (9)

in a convex case, and

16p2 = −(a4 + b4 + c4 + d4) + 2(a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2)− 8abcd (10)

in a non-convex case, Fig. 4.

Note, that both polynomials in (9) and (10) on the right are symmetric polynomials, i.e., by any change
of the order of variables a, b, c, d the formulas remain unchanged. Denote by k, l,m, n elementary
symmetric functions in variables a2, b2, c2, d2, i.e.,

k = a2 + b2 + c2 + d2,

l = a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2,

m = a2b2c2 + a2b2d2 + a2c2d2 + b2c2d2,

n = a2b2c2d2.

and let s = 16p2. Then both formulas (9) and (10) can be expressed by one formula

(k2 − 4l + s)2 − 64n = 0. (11)
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Figure 4: Two cyclic quadrilaterals with the same side lengths a, b, c, d — convex and non-convex
cases

Similarly we can express the formula of Heron which reads

k2 − 4l + s = 0, (12)

where k = a2 + b2 + c2, l = a2b2 + a2c2 + b2c2 and s = 16p2.

Remark:

Note the similarity of the formulas (11) and (12). If we put for instance d = 0 then a quadrilateral
becomes a triangle and the formula (11) becomes (12).

Now we we will derive the formula of Robbins [12], [8].

Problem (Robbins): Let ABCDE be a cyclic pentagon with side lengths a, b, c, d, e and the area p.
Find a relation among a, b, c, d, e, p.

To solve the problem we will use coordinate-free approach. Consider a cyclic pentagon ABCDE
with sides a = |AB|, b = |BC|, c = |CD|, d = |DE|, e = |EA|, and diagonals i1 = |CE|,
i2 = |AD|, i3 = |BE|, i4 = |AC|, i5 = |BD|, Fig. 5.
First suppose that ABCDE is a convex cyclic pentagon. We will use the formula (5) to express the
area p of ABCDE in terms of its lengths of sides a, b, c, d, e and diagonals i1, i2, i3, i4, i5. Now we
need conditions for a pentagon ABCDE to be cyclic. Using the Ptolemy theorem on cyclic convex
quadrilaterals ABCD, BCDE, CDEA, DEAB and EABC we get

h1 := ac+ bi2 − i4i5 = 0,

h2 := bd+ ci3 − i5i1 = 0,

h3 := ce+ di4 − i1i2 = 0,

h4 := da+ ei5 − i2i3 = 0,

h5 := eb+ ai1 − i3i4 = 0.

Applying the Ptolemy conditions h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, to the formula (5) we get
the important relation

k2 − 4l + s = 4(eabi1 + abci2 + bcdi3 + cdei4 + deai5), (13)
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Figure 5: Cyclic pentagon ABCDE

where

k = a2 + b2 + c2 + d2 + e2,

l = a2b2 + a2c2 + a2d2 + a2e2 + b2c2 + b2d2 + b2e2 + c2d2 + c2e2 + d2e2,

m = a2b2c2 + a2b2d2 + a2b2e2 + a2c2d2 + a2c2e2 + a2d2e2 + b2c2d2 + b2c2e2 + b2d2e2 + c2d2e2,

n = a2b2c2d2 + a2b2c2e2 + a2b2d2e2 + a2c2d2e2 + b2c2d2e2,

o = a2b2c2d2e2

are elementary symmetric functions and s = 16p2.

Now we need ”to get rid” of variables i1, i2, i3, i4, i5 in (13) to obtain a formula in a, b, c, d, e and p.
To ensure the planarity of ABCDE it suffices to ensure planarity of quadrilaterals ABCD, BCDE,
CDEA, DEAB andEABC.We remind the relation (4) which is a necessary and sufficient condition
for a quadrilateral to be planar. But the use of (4) by elimination of i1, i2, i3, i4, i5 is time consuming.
Therefore we introduce the following simplification.
If a quadrilateral is cyclic then (4) can be simplified by the following formula [13], [9]:

S2 = PV − 1/2M, (14)

where S = e(ab+ cd)− f(bc+ ad), P = ac+ bd− ef and V = ac(−a2− c2 + b2 + d2 + e2 + f 2) +
bd(a2 + c2 − b2 − d2 + e2 + f 2)− ef(a2 + c2 + b2 + d2 − e2 − f 2).
Suppose that P = 0. Then (14) implies that instead of the condition M = 0 we can take S = 0. This
gives five conditions for quadrilaterals ABCD, BCDE, CDEA, DEAB, EABC to be planar:

h6 := i4(ab+ ci2)− i5(bc+ ai2) = 0,

h7 := i5(bc+ di3)− i1(cd+ bi3) = 0,

h8 := i1(cd+ ei4)− i2(de+ ci4) = 0,

h9 := i2(de+ ai5)− i3(ea+ di5) = 0,
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h10 := i3(ea+ bi1)− i4(ab+ ei1) = 0.

Now we are ready to derive the formula of Robbins. Let us express the right side of (13) in terms of
a, b, c, d, e. Denote

h11 := 4(eabi1 + abci2 + bcdi3 + cdei4 + deai5)− t = 0,

where t is a slack variable.
Now we will eliminate variables i1, i2, i3, i4, i5 in the set of polynomials h1, h2, . . . , h11. As the
Ptolemy polynomials h1, h2, . . . , h5, and similarly the polynomials h6, h7, . . . , h10, are dependent, it
suffices to consider for instance the ideal I which is generated by six polynomials h3, h4, h5, h8, h9, h11.
CoCoA gives

Use R::=Q[a,b,c,d,e,i[1..5],t];
I:=Ideal(ce+di[4]-i[1]i[2],da+ei[5]-i[2]i[3],eb+ai[1]-i[3]i[4],
i[1](cd+ei[4])-i[2](de+ci[4]), i[2](de+ai[5])-i[3](ea+di[5]),
t-4(eabi[1]+abci[2]+bcdi[3]+cdei[4]+deai[5]));
Elim(i[1]..i[5],I);

in 1m 4s elimination ideal which is generated by one polynomial in a, b, c, d, e, t with 827 terms.
Substitution of elementary symmetric functions k, l,m, n, o and elimination of a, b, c, d, e gives a
polynomial equation Q = 0 with 37 terms, where

Q := t7 + t6l + t5km + t4k2n + t3k3o + t4m2 − 12t5n − 12t4ln − 8t3kmn − 8t2k2n2 − 36t4ko −
36t3klo−30t2k2mo−36tk3no−27k4o2−8t2m2n+48t3n2+48t2ln2+16tkmn2+16k2n3−72t3mo−
72t2lmo−96tkm2o+144t2kno+144tklno−72k2mno+216tk2o2+216k2lo2+16m2n2−64tn3−
64ln3 − 64m3o+ 288tmno+ 288lmno− 432t2o2 − 864tlo2 − 432l2o2.

Next substitution (k2− 4l+ s)− 4t = 0, (k2− 4l+ s)2− 64n−u = 0, k(k2− 4l+ s)+8m− v = 0,
128o− w = 0 together with elimination of k, l,m, n, o, t in the ideal L

Use R::=Q[u,v,w,k,l,m,n,o,t,s];
L:=Ideal(Q,kˆ2-4l+s-4t,(kˆ2-4l+s)ˆ2-64n-u,k(kˆ2-4l+s)+8m-v,128o-w);
Elim(k..t,L);

gives the final result
u3s+ u2v2 − 16v3w − 18uvws− 27w2s2 = 0 (15)

which is the formula of Robbins.

Similarly we proceed in the case of a non-convex cyclic pentagon. Also in this case we get the same
result (15) [12].

Remark:

1. Notice that the formula (15) is of the 7th degree in s = 16p2, where p is the area of a pentagon.
This means that there exist at most seven cyclic pentagons with given side lengths a, b, c, d, e and
different radii.

2. If we put for instance e = 0 in the pentagon ABCDE then it becomes a quadrilateral and the
formula (15) transforms into the formula (11) for a quadrilateral.
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3. As far as I know, the explicit formula for the area of a cyclic n-gon exists for n = 3, 4, 5, 6, 7, 8.
See [6] for details.

3 Derivation of locus equations
The method of derivation can be also used to determine the locus equations of a motion whose geo-
metric description is given, see [15], [16].
Searching for loci of points forms one part of the geometry seminar which I lead for several years at
the University of South Bohemia. The reason why this topic is included into the seminar is natural. In
practice we often meet situations in which we are to determine a trajectory of a point by a given mo-
tion. Another reason is that searching for loci belongs to the most difficult parts of a school curricula.
By searching for loci we keep the following rules:

• First demonstrate the problem and construct some points of the searched locus.

• On the base of the previous step try to guess the locus.

• Then use the icon Locus in DGS (GeoGebra, Cabri, ...) to verify the locus. Remember that this
is an exact mathematical proof!

• Using CAS (Derive, Maple Mathematica,...) derive the locus equation exactly.

3.1 Loci in plane
To describe derivation of locus equations orderly, we start with the following problem:

Let ABC be a triangle with the given base AB and the vertex C on a line k. Find the locus of the
orthocenter G of ABC if C moves on the line k.

First we demonstrate the problem in GeoGebra. When we move the vertex C along the line k we see

Figure 6: If C moves on k then G moves on a curve similar to parabola

that the orthocenter G moves along the curve which is similar to parabola, Fig. 6. Another position
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of the line k gives a curve which is similar to hyperbola, Fig. 7.
We can conclude that the locus is probably hyperbola or parabola.

The question arises:

What is the solution?

To decide this we will derive the locus equation using CAS.

Figure 7: If C moves on k then G moves on a curve similar to hyperbola

Let us place a rectangular coordinate system so that A = [0, 0], B = [1, 0], C = [v, w], G = [p, q]
and let k be an arbitrary line with the equation k : ax+ by+ c = 0, Fig. 7. We translate the geometry
situation into the following set of polynomial equations:

For the intersection G = [p, q] of heights hAB and hBC it holds:

G ∈ hAB ⇒ h1 : p− v = 0,

G ∈ hBC ⇒ h2 : (v − 1)p+ wq = 0.

Further

C ∈ k ⇒ h3 : av + bw + c = 0.

We get the system of three equations h1 = 0, h2 = 0, h3 = 0 in variables a, b, c, v, w, p, q where a, b, c
are independent variables, whereas v, w, p, q are dependent variables. To find the locus of G = [p, q]
we eliminate variables v, w in the ideal I = (h1, h2, h3) to get a relation in p, q which depends on
a, b, c. In CoCoA we enter

Use R::=Q[a,b,c,v,w,p,q];
I:=Ideal(p-v,(v-1)p+wq,av+bw+c);
Elim(v..w,I);

and get a polynomial C which leads to the equation

C(p, q) := bp2 − apq − bp− cq = 0. (16)
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Figure 8: If C moves on k ‖ AB then G lies on parabola

We can suppose that (a, b) 6= (0, 0) since in this case the line k is not defined. Then (16) is the
equation of a conic C(p, q) = 0.
The cases k = hAB, k = AC, or k = BC lead to singular conics which consist of two intersecting
lines which are not depicted.

Considering regular conics we get two cases:

If k ‖ AB the locus C(p, q) = 0 is a parabola with the vertex [1/2,−b/(4c)] and a parameter |c/(2b)|,
Fig. 8.

If k ∦ AB we obtain a hyperbola centered at [−c/a,−b(a+2c)/a2] with one asymptote perpendicular
to AB and the second asymptote perpendicular to the line k through the intersection of the lines AB
and k, Fig. 9.

Figure 9: If C moves on k ∦ AB then G lies on hyperbola

In the given example we see that

• the use of DGS does not suffice to determine a curve exactly,
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• the use of CAS was needed.

It would be helpful to find the locus classically.

The next example shows that the locus can be an algebraic curve of a higher degree.

Let ABC be a triangle with the given side AB and the vertex C on a circle k centered at B and
radius |AB|. Find the locus of the orthocenter G of ABC if C moves on k.

First we construct the triangle ABC with the point C on the circle k in GeoGebra. Using a window
Locus we construct the locus of the orthocenter G if C moves along k.
In the next step we derive the locus equation by CAS. We will use the same notation as in the previous
case, Fig. 10. The situation is described by the following system of equations:

Figure 10: If C moves on k then G moves on a strophoid

G ∈ hAB ⇒ h1 : p− v = 0,

G ∈ hBC ⇒ h2 : (v − a)p+ wq = 0,

C ∈ k ⇒ h3 : (v − a)2 + w2 − a2 = 0.

Elimination of v, w in the system h1 = 0, h2 = 0, h3 = 0 gives in the program Epsilon

with(epsilon);
U:=[p-v,(v-a)*p+w*q,(v-a)ˆ2+wˆ2-aˆ2]:
X:=[p,q,v,w]:
CharSet(U,X);

the equation
p3 + pq2 − 2p2a− 2q2a+ pa2 = 0 (17)
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which is the equation of a cubic curve called strophoid [14], Fig. 10.
The strophoid, or more exactly the right strophoid, has some interesting properties [4], [14], [5]. One
of them is as follows:

Let k be a circle centered at S which is tangent to a given line AB at B. Let P be the intersection of
the circle k and the line AS. If S moves along the perpendicular to AB at B then the locus of P is a

Figure 11: Definition of a strophoid

strophoid.

Let us derive the locus equation. We will use elimination of suitable variables in a coordinate system.
Adopt a rectangular coordinate system so that A = [0, 0], B = [a, 0], S = [a, t], P = [p, q], Fig. 11.
Algebraic description is as follows:

P ∈ c ⇒ h1 := (p− a)2 + (q − t)2 − t2 = 0,

P, S,A are collinear⇒ h2 :=

∣∣∣∣∣∣
p q 1
a t 1
0 0 1

∣∣∣∣∣∣ = 0.

Elimination of t in the system h1 = 0, h2 = 0 in Epsilon gives

with(epsilon);
U:=[(p-a)ˆ2+(q-t)ˆ2-tˆ2,p*t-q*a]:
X:=[p,q,a,t]:
CharSet(U,X);

the equation (17). We get the same locus as in the previous case.
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Remark:

1. The property just proved is often used as the definition of a strophoid [4].

2. Observe that a strophoid is bounded from the right by the asymptote which is perpendicular to r
and goes through the point A′ = [2a, 0], Fig. 11.

The fact that we obtained the same curve as the locus of two motions means that the strophoid has two
following properties — it is the locus of the orthocenter of ABC when C moves on a given circle k1,
and it is also the locus of the intersection P of the line AS and the circle k2. Let us prove classically
that a strophoid, which is defined by intersections of a line with a circle, has the property shown in
the example above:

For any point P of a strophoid which is given by the points A a B, the vertex C of a triangle ABC
with the orthocenter P lies on the circle centered at B and radius |AB|, Fig. 12.

Figure 12: Classical proof

Let P be an arbitrary point of a strophoid which is the intersection of the line AS and the circle k2.
Construct the triangle ABC with the orthocenter P. We are to show that C ∈ k1, Fig. 12.
By the theorem of Thales the triangle PBQ is right from which |∠BPQ|+ |∠PQB| = 90◦.
Right triangles PBE and PQB are similar which implies |∠PQB| = |∠PBE|.
As |∠ABS| = 90◦ and |∠BPQ| = |∠PBS|, then

|∠ABP | = |∠PBE|

and the triangle ABC is isosceles with |AB| = |BC|. Hence C ∈ k1.
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Now we will show another property of a strophoid. It is related to the well-known Steiner–Lehmus
theorem [17]: If a triangle has two internal angle bisectors of equal length, the triangle is isosceles.

In [5] the modification of the Steiner–Lehmus theorem is studied. We will show:

Figure 13: Internal and external angle bisectors at the vertex A are of equal length

Let ABC be a triangle with a fixed base AB. Then the locus of the vertex C such that internal and
external angle bisectors at the vertex A are of equal length is a strophoid given by the vertices A and
B.

The locus can be find in the following way. Choose a system of coodinates so that A = [0, 0],
B = [a, 0], C = [u, v], M = [m1,m2], N = [n1, n2], D = [r, 0], E = [p, q], Fig. 13. Then:

|AC| = |AD| ⇒ h1 := u2 + v2 − r2 = 0,

E is the center of AD ⇒ h2 := u+ r − 2p, h3 := v − 2q = 0,

A, E,M are collinear⇒ h4 := m1q −m2p = 0,

B,M,C are collinear⇒ h5 := um2 + va−m2a−m1v = 0,

AN ⊥ AM ⇒ h6 := m1n1 +m2n2 = 0,

B,N,C are collinear⇒ h7 := un2 + va− n2a− n1v = 0,

|AM | = |AN | ⇒ h8 := m2
1 +m2

2 − n2
1 − n2

2 = 0.

Elimination of dependent variables r, p, q,m1,m2, n1, n2 in the ideal I = (h1, h2, . . . , h8) in CoCoA

Use R::=Q[u,v,a,r,p,q,m[1..2],n[1..2]];
I:=Ideal(uˆ2+vˆ2-rˆ2,u+r-2p,v-2q,m[1]q-m[2]p,um[2]+va-m[2]a-m[1]v,
m[1]n[1]+m[2]n[2],un[2]+va-n[2]a-n[1]v,m[1]ˆ2+m[2]ˆ2-n[1]ˆ2-n[2]ˆ2);
Elim(r..n[2],I);

gives
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Figure 14: If |AM | = |AM | then the locus of C is a strophoid

C(u, v) := (u2 + v2)(u− 2a) + ua2 = 0

which is the equation of a strophoid, Fig. 14.

Now we have to show that for any point C of the strophoid the bisectors at the vertex A are of equal
length. To do this we express the normal form NF of the polynomial h8 with respect to the ideal
J = (h1, h2, . . . , h7, av − 1, C), where we excluded the cases a = 0, i.e. A = B and v = 0, i.e
A,B,C are collinear. Entering in CoCoA

Use R::=Q[u,v,a,r,p,q,m[1..2],n[1..2],t,s];
J:=Ideal(uˆ2+vˆ2-rˆ2,u+r-2p,v-2q,m[1]q
-m[2]p,um[2]+va-m[2]a-m[1]v,m[1]n[1]+m[2]n[2],un[2]+va-n[2]a-n[1]v,
(uˆ2 + vˆ2)(u - 2a) + uaˆ2,av-1);
NF(m[1]ˆ2+m[2]ˆ2-n[1]ˆ2-n[2]ˆ2,J);

we get the resultNF = 0. This means that the polynomial h8 belongs in the ideal J and the statement
is proved.

Let us show classically that a strophoid, which is defined above by intersections of a line with a circle,
has the following property:

For any point C of a strophoid which is given by the points A a B, internal and external angle
bisectors at the vertex A of a triangle ABC are of equal length, Fig. 15.

From4ABM the equality
ω + β = α

follows. Similarly from4ABX we get

2(ω + β) = 90◦.

Then α = 45◦ and4AMN is isoceles.
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Figure 15: Internal and external angle bisectors at A are of equal length—classical proof

3.2 Loci in space
Next we will show an example on searching locus equation in space. This example is based of the
well-known Simson–Wallace theorem which reads: Let ABC be a triangle and P a point of the cir-
cumcircle of ABC. Then the feet of perpendiculars K,L,M from P onto the sides of ABC lie on a
straight line.

See [2] for details.

Now the question arises. What is the analogy of this theorem in space? Instead of a triangle we can
take a tetrahedron ABCD. And what is the analogy of a circumcircle of a triangle in the case of
a tetrahedron? Is it a sphere? Most students said ”yes.” The answer is given in the solution of the
following problem [8], [11]:

Let K,L,M,N be the feet of perpendiculars dropped from a point P onto the faces BCD, ACD,
ABD, ABC of a tetrahedron ABCD. What is the locus of P such that K,L,M,N are complanar?

Choose a rectangular system of coordinates so that A = [0, 0, 0], B = [1, 0, 0], C = [b, c, 0],
D = [d, e, f ], K = [k1, k2, k3], L = [l1, l2, l3], M = [m1,m2,m3], N = [n1, n2, n3],
P = [p, q, r], Fig. 16.

The following relations describe the points K,L,M,N :

PK ⊥ BCD ⇒
h1 := (b− 1)(p− k1) + c(q − k2) = 0, h2 := (d− 1)(p− k1) + e(q − k2) + f(r − k3) = 0,

K ∈ BCD ⇒ h3 := −cf − ek3 + fk2 + ck3 + cfk1 + bek3 − cdk3 − bfk2 = 0,

PL ⊥ ACD ⇒
h4 := b(p− l1) + c(q − l2) = 0, h5 := d(p− l1) + e(q − l2) + f(r − l3) = 0,

L ∈ ACD ⇒ h6 := cfl1 + bel3 − cdl3 − bfl2 = 0,

PM ⊥ ABD ⇒
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K
L

N

M

P

z

y

xA=[0,0,0] B=[1,0,0]

C=[b,c,0]

D=[d,e,f]

Figure 16: Generalization of the Simson–Wallace theorem on a tetrahedron

h7 := p−m1 = 0, h8 := d(p−m1) + e(q −m2) + f(r −m3) = 0,

M ∈ ABD ⇒ h9 := em3 − fm2 = 0,

PN ⊥ ABC ⇒ h10 := p− n1 = 0, h11 := b(p− n1) + c(q − n2) = 0.

Conclusion is of the form:

K,L,M,N are complanar ⇒ h12 :=

∣∣∣∣∣∣∣∣
k1 k2 k3 1
l1 l2 l3 1
m1 m2 m3 1
n1 n2 0 1

∣∣∣∣∣∣∣∣ = 0.

Elimination of variables k1, k2, k3, l1, l2, l3, m1,m2,m3, n1, n2 in the system of polynomials h1, h2, . . . , h12
in the program Epsilon

with(epsilon);
U:=[(b-1)*(p-k[1])+c*(q-k[2]),(d-1)*(p-k[1])+e*(q-k[2])+f*(r-k[3]),-c*f-e*k[3]
+f*k[2]+c*k[3]+c*f*k[1]+b*e*k[3]-c*d*k[3]-b*f*k[2],b*(p-l[1])+c*(q-l[2]),
d*(p-l[1])+e*(q-l[2])+f*(r-l[3]),c*f*l[1]+b*e*l[3]-c*d*l[3]-b*f*l[2],p-m[1],
d*(p-m[1])+e*(q-m[2])+f*(r-m[3]),e*m[3]-f*m[2],p-n[1],b*(p-n[1])+c*(q-n[2]),
k[1]*l[2]*m[3]-k[1]*m[2]*l[3]+k[1]*n[2]*l[3]-k[1]*n[2]*m[3]-l[1]*k[2]*m[3]+
l[1]*m[2]*k[3]-l[1]*n[2]*k[3]+l[1]*n[2]*m[3]+m[1]*k[2]*l[3]-m[1]*l[2]*k[3]+
m[1]*n[2]*k[3]-m[1]*n[2]*l[3]-n[1]*k[2]*l[3]+n[1]*k[2]*m[3]-n[1]*l[2]*m[3]
+n[1]*l[2]*k[3]-n[1]*m[2]*k[3]+n[1]*m[2]*l[3]]:
X:=[b,c,d,e,f,p,q,r,k[1],k[2],k[3],l[1],l[2],l[3],m[1],m[2],m[3],n[1],n[2]]:
CharSet(U,X);

gives the equation4

4In CoCoA which is based on Gröbner bases computation we need to use successive elimination to obtain the same
result.
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Figure 17: Cubic surface p2q + pq2 + p2r + q2r + pr2 + qr2 − pq − pr − qr = 0

C(p, q, r) := c2f 2p2q+ cf(f 2+ e2− ce)p2r− cf 2(2b− 1)pq2− cf 2(2d− 1)pr2+2cef(b− d)pqr+
bf 2(b−1)q3+f(cf 2− b2e+ be− cd+ cd2)q2r+f 2(b2−2ce− b+ c2)qr2+f(cd2− cd− eb2− ec2+
e2c+be)r3−c2f 2pq+cf(ce−e2−f 2)pr+bcf 2q2+f(2bcde−2bce−c2d2−b2e2+be2+c2d−b2f 2−
c2f 2+bf 2)qr+(b2ef 2−bef 2+c2d2e−c2de+c2ef 2+bce2+cde2+b2e3−2bcde2−be3+cdf 2)r2 = 0.

It is the equation of a cubic surface C(p, q, r) = 0 which is known as a Cayley surface [3].
We see that the locus is not a sphere as it could seem from the Simson–Wallace theorem in a plane.

For b = 0, c = 1, d = 0, e = 0 and f = 1 we get a cubic surface

p2q + pq2 + p2r + q2r + pr2 + qr2 − pq − pr − qr = 0 (18)

which is depicted in Fig. 17.
The cubic surface (18) has four singular points at vertices A = [0, 0, 0], B = [1, 0, 0], C = [0, 1, 0],
D = [0, 0, 1]. It contains all six edges of a tetrahedron ABCD.

Conclusion
Derivation of new statements brings new quality into mathematics and also in mathematics education.
Whereas in the past we explored at schools loci such as lines, segments, circles, conics, spheres and
quadrics, nowadays the situation is changing. Due to computers and appropriate software we can
investigate more complicated loci both in a plane and in space. By dynamic geometry systems we are
able to demonstrate them whereas by computer algebra systems we do exact mathematical proofs.
This makes us possible to meet less known algebraic curves of higher order and study them and even
discover new properties. Similar approach can be applied by investigation of loci in space as we could
see in the last example.
Technique mentioned above should not exclude the use of classical methods if it is possible.
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